SILENT BOUNDARY CONDITIONS FOR WAVE PROPAGATION IN SATURATED POROUS MEDIA

Author(s):  
A. GAJO ◽  
A. SAETTA ◽  
R. VITALIANI
1992 ◽  
Vol 82 (5) ◽  
pp. 2263-2273
Author(s):  
M. D. Sharma

Abstract Philippacopoulos (1988) discusses axisymmetric wave propagation in a fluid-saturated porous solid half-space. The disturbance is considered to be produced by the concentrated load P0exp(iωt) acting vertically at the surface. Boundary conditions chosen imply that a vertical force acting on the surface of fluid-saturated porous solid exerts no pressure on the interstitial liquid. These boundary conditions do not seem appropriate. In the present study, the boundary conditions have been changed in order to satisfy the concept of porosity. These are also in accordance with those discussed by Deresiewicz and Skalak (1963) for the special case of interface between liquid and liquid-saturated porous media. Analytic expressions have been derived for the displacements at the surface. The limiting case of a dry elastic solid is also deduced. Effects of intergranular energy losses due to solid phase and of dissipation due to flow of pore fluid are exhibited on the displacements at the surface. Contrary to Philippacopoulos (1988), the displacements in saturated poroelastic solids are found to be larger than those in a dry elastic solid with same Lamb's moduli.


Sign in / Sign up

Export Citation Format

Share Document